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INTRODUCTION 
Classical Swine Fever (CSF), also called Hog Cholera or 
European Swine Fever, is one of the most important in-
fectious diseases of pigs and wild boar, causing significant 
economic losses to the pig industry all over the world (1). 
Although eradicated from most European Union (EU) mem-
ber states, CSF continues to cause serious problems in differ-
ent parts of the world, including South-Eastern European 
countries (2, 3) and Asian countries (4, 5). Studies conducted 
over the past several decades have improved our knowledge 
of the mechanisms of CSFV translation and replication. New 
methodologies have facilitated advances in our understand-
ing of the RNA elements and viral and host factors that 
modulate CSFV replication and translation. In recent years, 
with the development of molecular techniques, diagnosis of 
CSF has become more rapid and accurate, however the con-
trol of CSF is still in question due to many complex factors 
in Asia and several countries of Central and South America. 

Antivirual drug (6), small interfering RNA (siRNA) (7), vac-
cination against CSF using inactivated or attenuated live 
virus vaccines (8) and marker vaccines (9) have been used to 
prevent CSF outbreaks or chronic infection in domestic pigs 
in these countries. CSF is a disease whose accurate diagnosis 
is difficult when based solely on clinical evidence. Thus, there 
is a growing demand for strategies that can provide timely 
clinical treatment and epidemiological control.

MOLECULAR EPIDEMIOLOGY OF CSF 

Genetic typing of CSFV
Genetic typing of CSFV genotypes, subgroups and types 
shows a regional distribution and has proven to be a useful 
method for supporting epidemiological investigations. This 
information helps researchers to trace the origin of the virus 
and to follow the viral spread. Phylogenetic analysis of CSFV 
strains and isolates originating from different continents has 
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proved that CSFV can be divided into three groups with 
three or four subgroups: 1.1, 1.2, 1.3; 2.1, 2.2, 2.3; 3.1, 3.2, 
3.3, 3.4; based on the partial sequences of the E2 and NS5B 
genes (10). Furthermore, different genotypes of CSFV are 
still spreading gradually and evolving worldwide. 

Epidemics of CSFV
Molecular epidemiology based on nucleotide sequence di-
versity is a useful tool for tracing virus spread and for de-
veloping disease control strategies. For instance, epidemio-
logical data from field investigations combined with genetic 
typing identified seven unrelated epidemics and a number 
of sporadic outbreaks in domestic pigs and in the wild boar 
population in Germany (11). Although not present in the 
United States, CSF is distributed worldwide. Several stud-
ies covering the molecular epidemiology of CSFV have been 
performed, including analysis of isolates from Asia, Europe 
and South America. 

Europe
Several epidemics have occurred in the EU over the past 
decade. The phylogenetic tree shows that the Russian CSF 
virus isolates from outbreaks that occurred between 1994 and 
1999 were all in subgroup 1.1 (12). Viruses of subgroup 2.1 
only sporadically occurred in the EU in 1989, 1993, 1997, 
and 2000. The virus that occurred in 1993 in Austria was 
detected in wild boar meat illegally imported from China 
(13). The virus of The Netherlands in early 1997 was most 
probably newly introduced into the EU, as it belonged to 
subgroup 2.1 (14), which then spread from The Netherlands 
to Belgium in June 1997, starting a smaller epidemic (15). 
In 2000, CSFV was introduced into the United Kingdom. 
Genetic typing showed that the East Anglian CSFV also 
belonged to subgroup 2.1 (16).

In Germany, 424 outbreaks of CSF in domestic pigs and 
a great number of cases in wild boar were recorded between 
1990 and 1998. Genetic typing of isolates from these out-
breaks using the 5’NTR (150 nt) revealed the existence of 
seven regional groups of CSFV isolates within subgroup 2.1, 
2.2, and 2.3 (17). A CSFV of subgroup 2.2 was responsible 
for CSF cases in wild boar in Switzerland (18), which also 
caused outbreaks in Austria (19). In Italy, viruses of sub-
group 2.2 was occurred d between 1985 and 2000 in the 
wild boar population (20, 21) and sporadically caused out-
breaks in domestic pigs (22). CSF viruses of genotype 2.3 

were endemic in domestic pigs as well as in a unique wild 
swine population (23), most probably due to widely diffused 
Sardinian tradition of "free pig" farming, where reared pigs 
are allowed occasional contact with wild boars. As a result of 
large quantities of pig and wild boar meat imported in some 
parts of Italy (24) local strain was introduced into mainland 
Italy. The epidemics in 1988, 1990 and between 1993 and 
1994 in Belgium were studied. Apart from one CSF virus 
isolate from 1988 which belonged to subgroup 1.1, the iso-
lates formed a discrete cluster within subgroup 2.3 (25). The 
possibility of a long-term persistence of genotype 2.3 CSFV 
strains existing at an almost undetectable level in affected re-
gions, even after long-term oral vaccination campaigns with 
intensive monitoring is a possibility. Hence, regional persis-
tence in German wild boar populations has to be taken into 
account as an important factor in the continual outbreaks in 
affected areas (26). Molecular epidemiology of 97 CSF virus 
isolates available from these countries, from outbreaks that 
occurred between 1994 and 2007, was performed. The find-
ings suggested that most of the isolates were from Romania 
and Bulgaria, and belonged to genotype 2.3 (27). The viruses 
isolated in the outbreak in Spain were 100 percent homolo-
gous and belonged to subgroup 2.3 (28). In Poland, Slovakia, 
Hungary, Estonia (29) and the Czech Republic (19), virus 
isolates also belonged to subgroups 2.3. 

On the basis of the former findings, we may conclud-
ed that group 1 consists of all CSFV strains (30) prior to 
the 1980’s, whereas all CSFV strains isolated from different 
European countries except Russia in the 1990’s and recent 
epidemics in the EU belongs to one of the subgroups within 
group 2 (2.1, 2.2, or 2.3) (10-12,20,25,29,31). CSF is still 
currently endemic in various European countries. 

Asia
In Asia, CSF epidemics are also fairly ubiquitous. Strains of 
genotypes 1, 2, and 3 have been isolated in different Asian 
countries (10,32). Furthermore, isolates belonging to group 3 
seem to occur solely in Asia (12). In Taiwan, by analyzing the 
E2 sequences of CSFV from field outbreaks during 1993-
2001, CSF viruses have been classified into two subgroups 
3.4 and 2.1 (33, 34). Furthermore the Taiwanese strains of 
sub-genotype 2.1 were divided into two different genotypes 
termed 2.1a and 2.1b which may have be introduced from 
different origins (33). Another finding suggested that all 
Taiwanese CSFV strains were sub-genotypes 3.4 prior to 
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1996. However, genotype 2 strains of CSFV, identified as 
sub-genotype 2.1 or 2.2, have been isolated since 1994 and 
have gradually replaced the sub-genotype 3.4 strain (35). 
One hundred and ten clinical specimens representing 109 
epizootic sites from 1986-1999 in China were also analyzed. 
A phylogenetic tree showed that 103 of the 110 field viruses 
were clustered within group 2 and subdivided into three sub-
groups, while the remaining seven viruses were clustered into 
subgroup 1.1 within group 1. It is evident that sub-groups 
2.1 and 2.2 have predominated in the more recent epizoot-
ics in China, while group 1 viruses have caused only limited 
epizootics (36). A novel isolated CSFV in China in 2004 
belonged to 2.3 topotype (37).

CSF is endemic in India. Phylogenetic analysis revealed 
that all CSFV isolates during 2005-2007 from domestic pigs 
in different districts of Assam belonged to group 1 and sub-
group 1.1 in contrast to the situation in other Asian countries 
(38). Seventeen CSFV isolates recovered during the period of 
3 years (2006-2008) from India could be grouped in to two 
subgroups, 1.1 and 2.2 (39). Another study demonstrated 
that CSFV field isolates from India 3 isolates belonged to 
genotype 2.1 and were closely related to European CSFV 
strains, and the remaining 6 isolates belonged to genotype 1 
that contained old and new strains. It also indicated circu-
lation of both genotypes 1 and 2.1 in north-eastern part of 
India (40). The findings above suggest that subgroup 1.1 CSF 
viruses are currently circulating in India, which is important 
for epidemiology and control of CSF. Furthermore, subgroup 
2.1 or 2.2 viruses were also involved in a CSFV outbreak. 

The CSFV isolates in Japan are divided into three gen-
ovars, CSFV-1, CSFV-2 and CSFV-3 (41). 24 isolates of 
CSFV obtained from CSF outbreaks during 1988 and 2003 
in the Republic of Korea were genetically characterized for 
partial E2 gene, compared with CSF viruses reported by oth-
er countries. Phylogenetic analyses classified Korean field 
isolates between 1988 and 1999 into subgroup 3.2, and the 
viruses isolated during 2002-2003 CSF epidemics were clas-
sified into a different subgroup 2.1 (5). 

South America
Although not present in the United States, CSF is distrib-
uted in Central and South America. Sporadic outbreaks of 
CSF are frequently recorded: For instance, Group 1 was re-
ported to be isolated from Asian and South American in the 
1980’s (30). The origin and evolution of the CSF epizootic 

that occurred in Cuba from 1993 to 1997 has been investi-
gated by the analysis of E2 gene sequences from 15 represen-
tative viral isolates as well as the vaccine and the challenge 
strains used in this country. In the phylogenetic tree derived 
from these sequences, the Cuban isolates were located in a 
defined cluster within the previously reported genomic sub-
group 1.2 (42).

PREVENTION AND CONTROL OF CSF 

Cutting off transmission routes of CSF
CSF can spread via various routes. Direct transmission of 
CSF is undoubtedly the most efficient way of CSFV trans-
mission. Epidemiological data found that most of primary 
CSF outbreaks were due to direct contacts with wild boar in-
fected with CSFV or contaminated swill feeding (43). Trade 
of living infected pigs bears the highest risk of transmitting 
the virus; international trade especially may lead to the spread 
of the virus over long distances. Furthermore, neighborhood 
contacts to infected farms and other contacts via contami-
nated persons and vehicles are important modes especially 
in areas with high pig and pig farm density (44). However, 
the role of airborne transmission remains debatable (31). In 
EU Countries, boars for artificial insemination (AI) must 
be CSF-free. Furthermore, control of the influx of meat and 
meat products from countries, a commercial development 
towards more local marketing systems, the reduction of the 
pig density in critical areas and strict hygiene measures on 
pig farms as well as vehicles used for animal transportation 
would be also beneficial to avoid the spread of CSF. 

CSF monitoring strategies in wild boars and  
domestic pigs
The wild boar population should be monitored for CSF out-
breaks. The CSF status of wild boar populations is still un-
known in several parts of Europe although a recommended 
monitoring program (oral immunization together with spe-
cial hunting strategies) is available (45). When an outbreak 
of CSF in wild boar is detected, early measures must be taken 
to protect domestic pigs. The control of endemic infections 
in wild boar populations appears to be difficult. The basic re-
quirement is the identification of both risk and surveillance 
zones, taking into account geographical conditions and the 
structure and the size of the wild boar populations. A com-
plete ban on hunting activities was introduced in Switzerland 
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for 2 months after the detection of CSF in wild boar in order 
to limit movement of potentially infected animals outside 
their natural habitat (21). 

Increased monitoring of the local domestic pig popula-
tion should detect possible CSF outbreaks at an early stage. 
Surveillance programs aim to keep the number of infected 
herds as small as possible, by shortening the so-called ‘‘high 
risk period’’. For instance, it was concluded leukocyte counts 
(31) could be an effective method for individual herds–but 
probably not for large-scale surveillance. It is probable that 
the Dutch CSF epidemic of 1997/1998 would have been 
detected earlier if routine serological surveillance had been 
applied (46). Additionally, computer-based models help to 
understand disease dynamics and can support decision-mak-
ers in case of an outbreak. Mass-action and state-transition 
models, branching processes and Monte Carlo methods (44), 
spreadsheet models (47) and spatial and stochastic models 
(48) have been used to study virus spread and to evaluate 
control strategies. However, due to changes in the biology 
of CSFV and pig trading schemes, it has become more diffi-
cult to completely control this disease, indicating that newer 
methods have to be developed for this purpose.

Eradication of CSF from wild boars and domestic pigs
Within the EU, different strategies are used for the eradica-
tion of CSF in wild boar and in domestic pigs. The combina-
tion of prophylactic mass vaccination and culling of infected 
pigs in endemic regions has made it possible to almost erad-
icate the disease in the EU. The control of CSF epidemics 
comprises of eradication of infected herds and preventive 
emptying of herds was effective within a radius of 750-1000 
m of infected areas (49). 

However, several epidemics which occurred in Europe 
during the last decade have pointed out that eradication ac-
cording to the present legislation may be very costly and 
ethically unacceptable, particularly in areas with a high pig 
density (50,51). For example, CSF occurred in Netherlands 
form 1997 to 1998 where millions of pigs were slaughtered 
and direct losses were calculated to amount to 2 billion US 
dollars for eradication (14). The epidemiological characteris-
tics of the 1997 CSF outbreak that occurred in the Limburg 
Province of Belgium between 30 June and 17 July 1997 re-
sulted in a total of 46,561 pigs being slaughtered to con-
trol the spread of the infection. Another 27,579 pigs were 
slaughtered in the framework of the market support. The to-

tal direct costs of the episode were estimated at 10,893,337 
Euros (15,52). Spain suffered an outbreak of CSF between 
June 14, 2001 and May 7, 2002; a total of 291,058 animals 
were slaughtered (28). 

VACCINATION
Though many countries including EU member states pursue 
a non-vaccination stamping-out policy, however for some 
developing countries such as China, India and Africa, there 
is still a difficult method to eradicate this complex disease, 
even though vaccination against CSFV has been applied. 
Therefore, under certain conditions, emergency vaccination 
combined with control measures might be a future option 
for disease eradication and control (45). 

Live attenuated virus strain vaccines 
Massive vaccination with live attenuated vaccines, such as 
C-strain, developed in China in mid-1950s has been imple-
mented routinely as a major control strategy in China as 
well as many other developing countries. The C-strain of 
the CSFV is considered as the gold standard vaccine for the 
control of CSF (53). The attenuated lapinized CSFV strains 
such as PAV-250, LPC, and HCLV, the attenuated CSFV 
by deletion of the viral N(pro) gene (54), can also induce vir-
tually complete protection against the disease (55). The live 
CSFV strain vaccines mentioned above provide protection 
for pigs for CSF, however, they do not permit the serologi-
cal discrimination between infected and vaccinated animals 
and its use can therefore impose severe trade restrictions. To 
solve these problems, advanced vaccines against CSF and 
discriminatory tests have been developed. 

DNA-based Vaccines
A number of efforts are in progress to develop DNA vac-
cines in recent years. DNA vaccines are an attractive pros-
pect because plasmid DNA can be highly purified and 
there is less opportunity for adventitious viruses to con-
taminate the vaccine preparation. Furthermore these vac-
cines are very stable at ambient temperatures and can be 
delivered in very small quantities under optimized route 
of injection. The vaccines developed were tested for safety 
and efficacy in animal models and claimed to be immu-
nogenic and safe. The investigations showed that a DNA 
vaccine expressing the complete E2 protein of CSFV such 
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as the Semliki Forest virus (SFV) replicon-derived DNA 
vaccine, conferred total protection against a severe viral 
challenge in domestic pigs immunized three times with 
600 µg or twice with 100 µg (56-58). However, the results 
generated by scientists from different laboratories need 
to be pooled and evaluated scientifically to select a few 

potential vaccine candidates for large-scale trials to proof 
efficacy and safety.

Marker vaccines
Marker vaccines against CSFV infection which allow dif-
ferentiation of infected from vaccinated animals have been 

Table 1: Molecular epidemiology of CSF
Continent Country Group or subgroup Time Animal Reference
Europe Russia 2.1 1994-1999 DP (12)

Austria 1.1
2.2

1993
1992, 94

WB
WB

(13)
(19)

The Netherlands 2.1 1997 DP (14)
Belgium 2.1

1.1
2.3

1997
1988

 1990,93,94

DP
DP
DP

(15)
(25)
(25)

UK 2.1 2000 DP (16)
Germany 2.1,2.2,2.3 1990-1998 DP,WB (17)
Switzerland 32.2 1998 WB (18)
The Czech Republic 2.2

2.3
1991-1998
1991-1998

DP,WB
DP,WB

(19)
(19)

Italy 2.2
2.3

1985-2000
1985-2000

DP,WB
DP,WB

(20-22)
(23-24)

Germany 2.3 2010 WB (26)
Romania 2.3 1994-2007 DP (27)
Bulgaria 2.3 1997-2008 DP (27)
Kosovo 2.3 2006 DP (27)
Montenegro 2.3 2000 DP,WB (27)
Serbia 2.3 2000-2007 DP (27)
Croatia 2.1 1996-2007 DP (27)
Macedonia 2.2 2000 DP (27)
Spain 2.3 2001-2002 DP (28)
Estonia 2.3 1990s DP (29)
Hungary 2.3 1990s DP (29)
Poland 2.3 1990s DP (29)
Slovakia 2.3 1990s DP (29)

Asia Korea 3.2
2.1

1988- 1999
2002-2003

DP
DP

(5)
(5)

Lao People’s Democratic Republic 2.1
2.2

1997
1999

DP
DP

(32)
(32)

Taiwan 3.4
2.1, 2.2

Prior to 1994
After 1994

DP
DP

(33)
(34,35)

China 1.1,2.1, 2.2
 2.3

1986-1999
2004

DP 
DP

(36)
(37)

India 1.1
2.2 
2.1

2005-2007
2006-2008
2000-2004

DP
DP
DP

(38-40)
(39)
(40)

Japan 1, 2, 3 Prior to 1999 DP (41)
South America Cuba 1.2 1993-1997 DP (42)

WB: wild boar; DP: domestic pigs
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developed, including protective peptides, single expressed 
proteins and chimeric viruses (59-80) (Table 2). 

CSFV glycoproteins E2, E(rns) and E1 are structural 
proteins detected on the external part of viral particles and 
play a major role in the initial stages of viral infection. Studies 
on these structural proteins have also opened a new ways to 
develop new vaccines. For example, the absence of the anti-
genic portion of glycoprotein E(rns), deletion of E2 gene, the 

A-domain of E2 or E2-encoding region of classical 
CSFV can be used as non-transmissible, modified, 
live-attenuated marker vaccines which protects pigs 
from a lethal challenge dose of the highly virulent 
strain or differentiate between infected and vacci-
nated animals (59-62). In addition, the carboxyl-
terminal domain of E1 glycoprotein provides the 
basis for a rationally designed and efficacious live-
attenuated CSF vaccine (63-65). 

Vaccination with the CSFV E2 subunit marker 
vaccine was an efficacious tool in the control pro-
gram during an outbreak of CSF. Vaccination 10 
days after outbreak significantly reduced the ver-
tical transmission of moderate-virulent strain of 
CSFV from the pregnant sow to its offspring (66-
69) and decreased the horizontal virus transmission 
of weaning piglets (53). However, another study 
showed that double vaccination with an E2 subunit 
marker vaccine only protected pregnant gilts from 
the clinical course of the disease but did not prevent 
horizontal nor vertical spread of the CSF virus (70). 
The E(rns) which possessed enzymatic activity and 
retained antigenicity might provide useful material 
for developing a marker vaccine (71,72).

An envelope glycoprotein D/E-negative 
Pseudorabies Virus (PRV) recombinant, Vaccinia 
Virus Recombinant (VVR) (62,73) or a recombi-
nant Porcine Adenovirus (rPAV) (74,75) which 
expressed envelope glycoprotein E2 of CSFV was 
constructed as a biologically safe vaccine vector. 
Vaccination of pigs showed that the recombinant 
virus was able to protect pigs against CSF. The 
other observations demonstrated that a deletion of 
E2 protein in combination with a modified CTB 
(76), eukaryotic expression plasmid with only 5' 
signal sequence of E2 (77), synthetic peptide vac-
cine using E2 N-terminal antigenic units B/C 

(54,78) and a multi-peptide-vaccine (MPV) using alumi-
num adjuvant (79) or E2 emulsified in Freund's adjuvant 
(80) were all suitable to act as a candidate marker vaccine 
against CSFV. 

Development of Antiviral drugs 
A few effective antiviral drugs are currently available against 
CSFV infections (Table 3). At a concentration of 5 µg/ml, 

Table 2: Development of vaccines based on glycoproteins of CSFV
Types of 
vaccine

Treatment References

Recombinant 
virus vaccine

Vaccinia virus recombinants (VVR) expressing all 
CSFV structural proteins except for E2

(62)

VVR expressing Erns and/or E2 protein (73)
Pseudorabies virus (PRV) recombinant virus 
expressing E2 or E1 protein

(74)

A recombinant porcine adenovirus (rPAV) 
expressing E2 protein

(74)

A recombinant parapoxvirus (PPV) Orf virus 
(ORFV) expressing E2 protein

(67)

A recombinant baculovirus expressing Erns or 
E2 protein

(8,9)

A recombinant human adenovirus type 5 
expressing E2 protein

(75)

Live- 
attenuated 
vaccine

The 5' terminal half of the E2 and Erns gene of 
the C-strain was exchanged with the homologous 
gene of the BVDV strain 

(69)

The antigenic region of E2 and/or the complete 
Erns gene were replaced by the analogous 
sequence of BVDV II strain 

(78)

CSFV replicon particles lacking either the 
complete E2 gene or, alternatively, a stretch of 
204 nucleotides encoding 68 amino acids located 
in the C-terminal region of the E2 glycoprotein

(60)

Modification of the carboxyl-terminal domain 
of E1

(64)

Modification of glycosylation of E2 (64)
E2 without transmembrane region (E2-TMR) (76)
Erns deletion mutants (65)

DNA  
vaccine

The Semliki Forest virus (SFV) replicon-derived 
DNA vaccine expressing the complete E2 protein

(56)

Alphavirus replicon-derived DNA vaccine 
expressing glycoprotein E2 

(58,69)

Subunit  
vaccine

E2 protein emulsified in Freund's adjuvant (80)
E2 protein in a water-oil-water adjuvant (66)

Epitope- 
vaccine

E2 N-terminal CKEDYRY (aa693-699) (71)
E2 N-terminal antigenic units B/C (79)
B cell epitope at the N-terminus of the E2 
protein 

(63)

Linear neutralizing epitopes have been mapped 
to envelope glycoprotein E2 and Erns

(68)
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prostaglandin (PGA1) was found to inhibit the multipli-
cation of CSFV in 99% in cultures of PK-15 cells (81,82). 
Tyborowska et al. (2007) found that very low doses of tunica-
mycin drastically reduced CSFV spread and the virus yield 
in SK6 (swine kidney) cell cultures (83). Some glycosylation 
inhibitors, such as two of newly designed uridine derivatives 
of 2-deoxy sugars, IW3 and IW7 mimicking part of tunica-
mycin could effectively arrest viral growth without signifi-
cant toxicity for mammalian cells. Moreover, IW3 and IW7 
reduced the formation of viral glycoproteins E2 and E(rns) 
in a dose-dependent manner (84). Due to the observed an-
tiviral effect accompanied by low cytotoxicity, these inhibi-
tors are potential candidates for the inhibition of the spread 
of CSFV. 

Capsid-targeted viral inactivation (CTVI) approach 
might be applicable to CSFV inhibition as a novel antivi-
ral strategy. Zhou et al. (2010) found that the CSFV cap-
sid protein (Cap) fused with the nuclease of Staphylococcus 
aureus (SN) in Escherichia coli could inhibit effectively the 
replication of CSFV in a dose-dependent manner, whereas 
the Cap fused with an enzymatically inactive SN (Cap-SN*) 
showed no nuclease activity or antiviral effects (85). Some 
proteins with ribonuclease (RNase) activity have been shown 
to suppress viral replication and may be valuable therapeu-
tic approaches against CSFV. Exogenous treatment of 3D8 
single-chain variable fragment (3D8 scFv) prior to or post-
CSFV infection, could suppress CSFV replication at the viral 
RNA level (86).

Small interfering RNA (siRNA)
Small interfering RNA (siRNA) can be used to control ge-
nome replication and viral production (Table 3). For ex-
ample, three species of siRNA, targeting different regions 
of CSFV: Npro and NS5B genes, were prepared by in vitro 
transcription. After transfection of PK-15 cells with each of 
the siRNAs followed by infection with CSFV, the results 
showed that treatment with the siRNAs caused a 4-12-fold 
reduction in viral genome copy number and suppressed the 
production of infectious virus by up to 467-fold for 72-84 h 
(87). The use of synthetic siRNA which corresponded to nu-
cleotides 1130-1148 of the CSF virus strain Alfort, targeting 
the nucleocapsid protein (C) was investigated to inhibit viral 
replication (7). Therefore, the application of RNAi strategy 
for controlling CFSV could become a promising alternative 
to conventional eradication measures. 

CONCLUSION
CSF epidemics in Asia and several countries of Central and 
South America have clearly shown that preventing the in-
troduction of CSFV deserves high priority. Development of 
suitable marker vector vaccines to allow the vaccination of 
pigs, as well as better control strategies in disease outbreak 
countries is also important. Although many techniques and 
strategies have been developed for detection and control of 
CSF, there still remains many efforts that should be taken: 1) 
study of the efficacy and stability of vaccines against CSFV; 

Table 3. Application of antiviral drugs and siRNA
Application Methods Effects References
Antiviral drugs Prostaglandin (PgA1) Inhibit the multiplication of CSFV in 99% 

in PK-15 cells
(81,82)

Tunicamycin Reduce CSFV spread in SK6 cells (83)
Uridine derivatives of 2-deoxy sugars, IW3 and IW7 
mimicking part of tunicamycin

Reduce the formation of viral glycoproteins 
E2 and Erns and arrest viral growth

(84)

Capsid protein (Cap) fused with the nuclease of Staphylococcus 
aureus (SN) in Escherichia coli

Inhibit the replication of CSFV (85)

Cap fused with an enzymatically inactive SN No antiviral effects (85)
3D8 single-chain variable fragment (3D8 scFv) Suppress CSFV replication at the viral 

RNA level
(86)

Small interfering 
RNA

Targeting nucleocapsid protein (C) Inhibit viral replication (7)

Targeting Npro and NS5B genes Reduce in viral genome copy number and 
suppress the production of infectious virus

(87)
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2) virological surveys to be carried out to establish the dis-
tribution of CSFV among domestic pigs and wild boar; 3) 
phylogenetic analyses and genealogical relationships among 
members of the CSFV; 4) the study of atypical infection in 
piglets; 5) the investigation of persistent infection even after 
vaccination and (6) the differentiation between vaccinated 
and infected pigs. 
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